ALGEBRAIC NUMBER THEORY MIDTERM EXAM

Attempt all questions. Total : 100 marks

- (1) Let m be a square free integer, let $K = \mathbb{Q}[\sqrt{m}]$. Prove that the ring of integers $R = \mathbb{A} \cap K$ of K has an integral basis $\{1, \sqrt{m}\}$ if $m \equiv 2 \text{ or } 3 \pmod{4}$, and $\{1, \frac{1+\sqrt{m}}{2} \text{ if } m \equiv 1 \pmod{4}$. Compute the discriminant in each case. [10+10=20 marks]
- (2) Prove that $2.3 = (1 + \sqrt{-5}) \cdot (1 \sqrt{-5})$ gives an example of nonunique factorization in $\mathbb{Z}[\sqrt{-5}]$. Show how both sides factor into products of prime ideals, and check the details [10+10=20 marks]
- (3) Let $f(x) = x^3 + ax + b$ with $a, b \in \mathbb{Z}$. Assume that f is irreducible over \mathbb{Q} . Let α be a root of f.
 - (a) Show that $\operatorname{disc}(\alpha) = -(4a^3 + 27b^2)$. (Hint: Use the fact that disc(α) = $-N_{\mathbb{Q}}^{\mathbb{Q}[\alpha]}(f'(\alpha))$, in this case).[10 marks] (b) Suppose a = b = -1, then show that the number ring $\mathbb{A} \cap \mathbb{Q}[\alpha] =$
 - $\mathbb{Z}[\alpha]$ (you may quote a relevant result done in class).[10 marks]
 - (c) Show that $23\mathbb{Z}[\alpha] = (23, \alpha 10)^2 (23, \alpha 3)$. [10 marks]
 - (d) Show that the ideals $(23, \alpha 10)$ and $(23, \alpha 3)$ are pairwise co-maximal prime ideals. [10 marks]
- (4) Let K and L be number fields, $K \subset L$, $R = \mathbb{A} \cap K$, and $S = \mathbb{A} \cap L$ be the respective number rings. Let I and J be ideals of R, suppose IS divides JS (in S). Show that I divides J in R (you may assume that every nonzero ideal factorizes into prime ideals uniquely in a Dedekind domain). Show that for each ideal I in R, one has I = $IS \cap R.$ [10+10 = 20 marks]